pounds, VI and VII, derived from IVb and Vb were readily obtained by use of 2,3-dichloro-5,6dicyanobenzoquinone (DDQ) in refluxing benzene.⁹

Table I gives the physical constants of the series of 17-oxygenated- $6,16\alpha$ -dimethylprogesterones and their respective oral progestational activities.

CENTRAL RESEARCH LABORATORIES ROBERT P. GRABER GENERAL MILLS, INC. MARTIN B. MEYERS MINNEAPOLIS 13, MINN.

Received August 17, 1961

(9) D. Burn, D. N. Kirk, and V. Petrow, Proc. Chem. Soc., 14 (1960).

Cycloaddition of Ketenes to Enamines

Sir:

We wish to report some new reactions involving cycloaddition of ketenes to enamines derived from aldehydes. Ketene and dialkylketenes react with enamines having either one or no β -hydrogen to give 3-dialkylaminocyclobutanones. If the resulting cyclobutanones have one or more α -hydrogens (III, V, VII), they undergo an irreversible, ring-opening reaction; cyclobutanones that have no α -hydrogens (I) are quite stable.

Dimethylketene and N,N-dimethylisobutenylamine, when mixed in isopropyl acetate at room temperature, reacted to give a 64% yield of 3-dimethylamino-2,2,4,4-tetramethylcyclobutanone (I), b.p. 83-85° (24 mm.), n_D^{20} 1.4439, infrared maximum at 5.65 μ (cyclobutanone). The NMR spectrum of I was in complete agreement with the proposed structure. Anal. Calcd. for C₁₀H₁₉NO: C, 71.1; H, 11.2; N, 8.3. Found: C, 71.3; H, 11.2; N, 8.1. Quaternization of I with methyl tosylate followed by treatment with aqueous potassium hydroxide solution gave, after acidification, a 71% yield of 2,2,4-trimethyl-3-pentenoic acid (II), b.p. 86° (2 mm.), $n_{\rm D}^{20}$ 1.4472. Anal. Calcd. for C₈H₁₄O₂: C, 67.6; H, 9.9; neut. equiv., 142. Found: C, 67.6; H, 10.1; neut. equiv., 142.

Ketene reacted with N,N-dimethylisobutenylamine in hexane at 0° to give the intermediate 3-dimethylamino-2,2-dimethylcyclobutanone (III), identified by the characteristic infrared absorption of cyclobutanones at 5.65 μ . When this reaction product was warmed, its infrared spectrum changed radically; the band at 5.65 μ disappeared and three new bands at 6.05, 6.25, and 6.38 μ appeared. Distillation gave a 93% yield of 1-dimethylamino-4-methyl-1-pentene-3-one (IV), b.p. 105-107° (2 mm)., $n_{\rm D}^{20}$ 1.5301. Anal. Calcd. for C₈H₁₅NO: C, 68.0; H, 10.6; N, 9.9. Found: C, 68.0; H, 10.9; N, 9.7. The structure of IV was confirmed by independent synthesis from 3-methyl-2-butanone, methyl formate, and dimethylamine.¹

Berchtold, Harvey, and Wilson have isolated a cycloaddition product similar to III (*N*-morpholino in place of the dimethylamino group) and noted its thermal rearrangement to the acyclic aminovinyl ketone.² It has also been brought to our attention that a keto base is found in the acylation of an enamine with acetyl chloride, apparently by abstraction of hydrogen chloride to form ketene, and subsequent cycloaddition to the enamine.³

Dimethylketene and N-(1-butenyl)piperidine⁴ in

hexane reacted at -20° to give 2-ethyl-4,4-dimethyl-3-piperidinocyclobutanone (V), which, on distillation, gave an 82% yield of 2-ethyl-4-methyl-1-piperidino-1-penten-3-one (VI), b.p. 119–121° (0.6 mm.), n_D^{20} 1.5424, infrared maxima at 6.05, 6.25, and 6.38 μ . Anal. Calcd. for C₁₃H₂₂NO: C, 74.6; H, 11.0; N, 6.7. Found: C, 74.6; H, 11.0; N, 6.8.

(1) E. Benary, Ber., 63, 1573 (1930).

(2) G. A. Berchtold, G. R. Harvey, and G. E. Wilson, J. Org. Chem., 26, 4776 (1961).

- (3) G. Opitz, private communication.
- (4) C. Mannich and H. Davidsen, Ber., 69, 2106 (1936).

Ketene and N-(1-butenyl)piperidine in hexane reacted at -20° to give 2-ethyl-3-piperidinocyclobutanone (VII), as evidenced by the infrared maximum at 5.65 μ . Rearrangement of VII occurred during distillation to give a 70% yield of a mixture of 2-ethyl-1-piperidino-1-buten-3-one (VIII) and 1-piperidino-1-hexen-3-one (IX) that was not separated by fractional distillation. The mixture had a boiling point of 137° (0.3 mm.), n_D^{22} 1.5544, infrared maxima at 6.05, 6.25, and 6.38 μ . An estimate made from the NMR spectrum showed the mixture to be about two parts of IX to one part of VIII. Anal. Calcd. for C₁₁H₁₉NO: C, 72.9; H, 10.5; N, 7.8. Found: C, 72.7; H, 10.5; N, 7.7.

The thermally unstable cyclobutanones, III, V, and VII, were treated with lithium aluminum hydride to give the corresponding cyclobutanols, which showed no tendency to undergo a ring-opening reaction.

The cycloaddition of other ketenes and enamines has been observed; this work will be described in greater detail at a later date.

RESEARCH LABORATORIES	R. H. HASEK
Tennessee Eastman Co.	J. C. Martin
Division of Eastman Kodak Co.	
KINGSPORT. TENN.	

Received August 18, 1961

The Reaction of Enamines with Ketene

Sir:

We wish to report the results of our initial studies of the reaction of enamines with ketene. Treatment of 4-N-pyrrolidino-3-penten-2-one with three molar equivalents of ketene in ether at 0° and chromatography of the reaction mixture after evaporation of the solvent afforded 5-acetyl-4,6-dimethylcoumalin (Ia) (52%), m.p. 72.8-73.4° (C, 65.10; H, 5.69), $\lambda_{\text{max}}^{\text{CrH,OH}}$ 296 m μ (ϵ 6090).

Similarly, ethyl 3-N-pyrrolidinocrotonate reacted with ketene to produce ethyl isodehydroacetate (Ib) (35%), m.p. 18-20° (C, 61.42; H, 6.13), $\lambda_{\max}^{C_{146}OH}$ 247 m μ (ϵ 6530), 294 m μ (5240), which was identical to a sample prepared by the procedure

of Wiley and Smith.¹ 1-N-Pyrrolidinocyclohexene reacted with excess ketene to produce II (16%), m.p. 82.0-84.5° (C, 72.93; H, 7.21), $\lambda_{\max}^{C_{1}H_{1}OH}$ 312 m μ (ϵ 6800). The NMR spectra of the α -pyrones are in agreement with the proposed structures. These results are particularly interesting in view of the observations that diketene reacts with enamines to form γ -pyrones.^{2,3}

The reaction of 1-N-morpholinoisobutene with ketene follows a different course. When either pentane or ether is the solvent, the product isolated is 2,2-dimethyl-3-N-morpholinocyclobutanone (III) (75%), m.p. 41.1-42.2° (C, 65.73; H, 9.38; N, 7.71). Compound III rearranges readily on warming to 4 - methyl - 1 - N - morpholino - 1 - butene - 3 - one (IV), identical to a sample prepared from mor-

pholine and ethynyl isopropyl ketone.⁴ Treatment of III with aqueous hydrogen peroxide produced a lactone (48%), m.p. 103.4–104.3° (C, 60.41; H, 8.63; N, 7.10) which is assigned structure V. Hasek and Martin⁵ have shown that ketene and dimethylketene react with enamines derived from aldehydes to yield the corresponding cyclobutanones. The rearrangement of these adducts has also been observed.

Department of Chemistry Massachusetts Institute of	Glenn A. Berchtold George R. Harvey
TECHNOLOGY	G. Edwin Wilson, Jb.
CAMBRIDGE 59, MASS.	

Received August 28, 1961

- (1) N. R. Smith and R. H. Wiley, Org. Syn., 32, 76 (1952).
- (2) S. Hünig, E. Benzing, and K. Hübner, Chem. Ber., 94, 486 (1961).
- (3) B. B. Millward, J. Chem. Soc., 26 (1960).
- (4) This sample was kindly supplied by Prof. N. J. Leonard of the University of Illinois.
- (5) R. H. Hasek and J. C. Martin, J. Org. Chem., 26, 4775 (1961).